Navigation

    Logo
    • Register
    • Login
    • Search
    • Recent
    • Tags
    • Unread
    • Categories
    • Unreplied
    • Popular
    • GitHub
    • Docu
    • Hilfe
    1. Home
    2. Kachel

    NEWS

    • Neuer Blog: Fotos und Eindrücke aus Solingen

    • ioBroker@Smart Living Forum Solingen, 14.06. - Agenda added

    • ioBroker goes Matter ... Matter Adapter in Stable

    K
    • Profile
    • Following 0
    • Followers 0
    • Topics 2
    • Posts 7
    • Best 2
    • Groups 1

    Kachel

    @Kachel

    Starter

    8
    Reputation
    26
    Profile views
    7
    Posts
    0
    Followers
    0
    Following
    Joined Last Online

    Kachel Follow
    Starter

    Best posts made by Kachel

    • Huawei Sun2000 & ioBroker via JS script funktioniert

      Die Modbus-Ansteuerung vom Huawei Sun2000 Wechselrichter ist über TCP etwas speziell, da nach öffnen des TCP-Ports noch eine Pause eingehalten werden muss, da sonst keine Daten zurück geliefert werden. Auch wird nicht jede Modbus-TCP-Anfrage mit den angeforderten Registern beantwortet. Daher funktioniert die Kommunikation über den normalen Modbus-Adapter im ioBroker nicht.

      Um die verfügbaren Register in den ioBroker zu bekommen hab ich ein js-script geschrieben, dass die Abfrage der Register über TCP macht und die Daten entsprechend parsed. Man braucht dafür im IOBroker nur die ScriptEngine und muss in deren Settings noch die modbus-serial hinzufügen. Danach legt das Script einen großen Satz an Objekten an und aktualisiert die regelmäßig (ca. 2x die Minute). Es werden nur Register gelesen - das Schreiben von Registern ist nicht eingebaut (und bei mir gerade auch nicht nötig). Damit die Netzwerkpakete möglichst groß sind werden die Registern in Blöcken abgefragt.

      Wer möchte kann das Script gerne nutzen. . Einfach IP, Batteriekonfiguration und die Modbus-IDs eintragen und ausführen. Wer es ändern möchte darf dies auch gerne tun - es freut aber sicher alle ioBroker-Nutzer wenn ihr Änderungen auch wieder veröffentlicht.

      Falls jemand noch eine Idee hat, wie man den Huawei File-transfer über Modbus implementieren kann (mit deren speziellem function-code 0x41), würde ich mich freuen. Der fehlt leider damit die Optimierer ihre Echtzeit-Daten in den IOBroker liefern können...

      der Kachel

      // License: Beerware! Do what ever you like with this, but I'm not liable for anything that you do with it.
      // If you like this code, feel free to buy me a beer ...
      // Have fun with it! der Kachel
      var ModbusRTU = require("modbus-serial");
      var client = new ModbusRTU();
      
      var modbusErrorMessages = [
          "Unknown error",
          "Illegal function (device does not support this read/write function)",
          "Illegal data address (register not supported by device)",
          "Illegal data value (value cannot be written to this register)",
          "Slave device failure (device reports internal error)",
          "Acknowledge (requested data will be available later)",
          "Slave device busy (retry request again later)"
      ];
      
      // open connection to a tcp line
      client.setTimeout(10000);
      
      // Enter your inverter modbus IP and port here:
      client.connectTCP("$$$ADD.YOUR.IP.HERE$$$", { port: 502 });
      // Enter the Modbus-IDs of your Sun2000 inverters here:
      const ModBusIDs = [16, 1];
      // On which Modbus-ID can we reach the power meter? (via Sun2000!)
      const PowerMeterID = 0;
      // Enter your battery stack setup. 2 dimensional array. 
      // e.g. [[3, 2], [3, 0]] means:
      // First inverter has two battery stacks with 3 + 2 battery modules
      // while second inverter has only one battery stack with 3 battery modules
      const BatteryUnits = [[3, 0], [3, 0]];
      
      // These register spaces need to be read:
      const RegisterSpacesToReadContinuously = [[30000, 81], [37100, 114], [32000, 116], [37000, 68],  [37700, 100], [37800, 100], [38200, 100], [38300, 100], [38400, 100], [35300, 40]];
      var RegisterSpacesToReadContinuouslyPtr = 0;
      
      var GlobalDataBuffer = new Array(2);
      for(var i=0; i<ModBusIDs.length; i++) {
          GlobalDataBuffer[i] = new Array(50000); // not optimized....
      }
      
      // ---------------------------------------------------------------
      // Some helper functions:
      function readUnsignedInt16(array) {
          var value = array[0];    
          return value;
      }
      
      function readUnsignedInt32(array) {
          var value = array[0] * 256 * 256 + array[1];    
          return value;
      }
      
      function readSignedInt16(array) {
          var value = 0;
          if (array[0] > 32767)
              value = array[0] - 65535; 
          else
              value = array[0];
      
          return value;
      }
      function readSignedInt32(array) {
          var value = 0;
          for (var i = 0; i < 2; i++) {
              value = (value << 16) | array[i];
          }
          return value;
      }
      function getU16(dataarray, index) {
          var value = readUnsignedInt16(dataarray.slice(index, index+1));
          return value;
      }
      
      function getU32(dataarray, index) {
          var value = readUnsignedInt32(dataarray.slice(index, index+2));
          return value;
      }
      
      function getI16(dataarray, index) {
          var value = readSignedInt16(dataarray.slice(index, index+1));
          return value;
      }
      
      function getI32(dataarray, index) {
          var value = readSignedInt32(dataarray.slice(index, index+2));
          return value;
      }
      
      function getString(dataarray, index, length) {
          var shortarray = dataarray.slice(index, index+length);
          var bytearray = [];
          for(var i = 0; i < length; i++) {
              bytearray.push(dataarray[index+i] >> 8);
              bytearray.push(dataarray[index+i] & 0xff);
          }       
          var value =  String.fromCharCode.apply(null, bytearray);    
          return value;
      }
      
      function getZeroTerminatedString(dataarray, index, length) {
          var shortarray = dataarray.slice(index, index+length);
          var bytearray = [];
          for(var i = 0; i < length; i++) {
              bytearray.push(dataarray[index+i] >> 8);
              bytearray.push(dataarray[index+i] & 0xff);
          }       
          var value =  String.fromCharCode.apply(null, bytearray);    
          var value2 = new String(value).trim();
          return value2;
      }
      
      function forcesetState(objectname, value, options) {
          if(!existsState(objectname)) {
              createState(objectname, value, options);        
          }
          else {
              setState(objectname, value);
          }
      }  
      // ---------------------------------------------------------------
      // Functions to map registers into ioBreaker objects:
      function processOptimizers(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerTotalNumber",     getU16(GlobalDataBuffer[id-1], 35200), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerOnlineNumber",    getU16(GlobalDataBuffer[id-1], 35201), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerFeatureData",     getU16(GlobalDataBuffer[id-1], 35202), {name: "", unit: ""});
      }
      
      function processInverterPowerAdjustments(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementMode",     getU16(GlobalDataBuffer[id-1], 35300), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementValue",    getU32(GlobalDataBuffer[id-1], 35301), {name: "", unit: ""}); // Note: This might be an error in the manual. It says register 35302 with quantity 2, but on 35303 is already the next value.
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementCommand",  getU16(GlobalDataBuffer[id-1], 35303), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementMode",   getU16(GlobalDataBuffer[id-1], 35304), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementValue",  getU32(GlobalDataBuffer[id-1], 35305), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementCommand",getU16(GlobalDataBuffer[id-1], 35307), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.PowerMeterActivePower",     getI32(GlobalDataBuffer[id-1], 35313), {name: "", unit: ""});
      }
      
      function processBattery(id) {
          // Battery registers 1-15 (Stack 1 related)
          if(BatteryUnits[id-1][0] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RunningStatus",          getU16(GlobalDataBuffer[id-1], 37000), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.ChargeAndDischargePower",getI32(GlobalDataBuffer[id-1], 37001), {name: "Charge and Discharge Power", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BusVoltage",             getU16(GlobalDataBuffer[id-1], 37003) / 10, {name: "Busvoltage", unit: "V"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BatterySOC",             getU16(GlobalDataBuffer[id-1], 37004) / 10, {name: "Battery SOC", unit: "%"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.WorkingMode",            getU16(GlobalDataBuffer[id-1], 37006), {name: "Working Mode", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RatedChargePower",       getU32(GlobalDataBuffer[id-1], 37007), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RatedDischargePower",    getU32(GlobalDataBuffer[id-1], 37009), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.FaultID",                getU16(GlobalDataBuffer[id-1], 37014), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.CurrentDayChargeCapacity",    getU32(GlobalDataBuffer[id-1], 37015) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37017) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BusCurrent",             getI16(GlobalDataBuffer[id-1], 37021) / 10, {name: "Buscurrent", unit: "A"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BatteryTemperature",     getI16(GlobalDataBuffer[id-1], 37022) / 10, {name: "Battery Temperatue", unit: "°C"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RemainingChargeDischargeTime", getU16(GlobalDataBuffer[id-1], 37025), {name: "", unit: "mins"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.DCDCversion",            getZeroTerminatedString(GlobalDataBuffer[id-1], 37026, 10), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BMSversion",             getZeroTerminatedString(GlobalDataBuffer[id-1], 37036, 10), {name: "", unit: ""});
          }
          // Battery registers 16+17 (Storage-related)
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.MaximumChargePower",                getU32(GlobalDataBuffer[id-1], 37046), {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.MaximumDischargePower",             getU32(GlobalDataBuffer[id-1], 37048), {name: "", unit: "W"});
      
          // Battery register 18-20 (Stack 1 related)
          if(BatteryUnits[id-1][0] > 0) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.SN",                         getZeroTerminatedString(GlobalDataBuffer[id-1], 37052, 10), {name: "Serialnumber", unit: ""});       
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.TotalCharge",                getU32(GlobalDataBuffer[id-1], 37066) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.TotalDischarge",             getU32(GlobalDataBuffer[id-1], 37068) / 100, {name: "", unit: "kWh"});
          }
          // Battery register 21-31 (Stack 2 related)
          if(BatteryUnits[id-1][1] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.SN",                     getZeroTerminatedString(GlobalDataBuffer[id-1], 37700, 10), {name: "Serialnumber", unit: ""});        
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BatterySOC",             getU16(GlobalDataBuffer[id-1], 37738) / 10, {name: "", unit: "%"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.RunningStatus",          getU16(GlobalDataBuffer[id-1], 37741), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.ChargeAndDischargePower",getI32(GlobalDataBuffer[id-1], 37743), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.CurrentDayChargeCapacity",    getU32(GlobalDataBuffer[id-1], 37746) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37748) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BusVoltage",             getU16(GlobalDataBuffer[id-1], 37750) / 10, {name: "", unit: "V"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BusCurrent",             getI16(GlobalDataBuffer[id-1], 37751) / 10, {name: "", unit: "A"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BatteryTemperature",     getI16(GlobalDataBuffer[id-1], 37752) / 10, {name: "", unit: "°C"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.TotalCharge",                 getU32(GlobalDataBuffer[id-1], 37753) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.TotalDischarge",              getU32(GlobalDataBuffer[id-1], 37755) / 100, {name: "", unit: "kWh"});
          }
          // Battery register 32-41 (Storage related)
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.RatedCapacity", getU32(GlobalDataBuffer[id-1], 37758) / 1, {name: "", unit: "Wh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.SOC", getU16(GlobalDataBuffer[id-1], 37760) / 10, {name: "", unit: "%"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.RunningStatus", getU16(GlobalDataBuffer[id-1], 37762) / 1, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.BusVoltage", getU16(GlobalDataBuffer[id-1], 37763) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.BusCurrent", getI16(GlobalDataBuffer[id-1], 37764) / 10, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.ChargeAndDischargePower", getI32(GlobalDataBuffer[id-1], 37765) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.TotalCharge", getU32(GlobalDataBuffer[id-1], 37780) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.TotalDischarge", getU32(GlobalDataBuffer[id-1], 37782) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.CurrentDayChargeCapacity", getU32(GlobalDataBuffer[id-1], 37784) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37786) / 100, {name: "Current DayDiscarge ", unit: "kWh"});
      
          // Battery registers 42+43 (Battery stack related)   
          if(BatteryUnits[id-1][1] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.SoftwareVersion",    getZeroTerminatedString(GlobalDataBuffer[id-1], 37814, 8), {name: "Softwareversion", unit: ""});
          }
          if(BatteryUnits[id-1][0] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.SoftwareVersion",    getZeroTerminatedString(GlobalDataBuffer[id-1], 37799, 8), {name: "Softwareversion", unit: ""});
          }
      
          // Registers 44 to 98: (Battery pack related)
          for(var i = 1; i <= 2; i++){        
              if(BatteryUnits[id-1][i-1] >= 0) {            
                  for(var j = 1; j <= BatteryUnits[id-1][i-1]; j++) {
                      //[[38200, 38242, 38284] [38326, 38368, 38410]]; (+42 for each battery pack, +126 for each stack)
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".SN",                getZeroTerminatedString(GlobalDataBuffer[id-1], 38200+(i-1)*126+(j-1)*42, 6), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".FirmwareVersion",   getZeroTerminatedString(GlobalDataBuffer[id-1], 38210+(i-1)*126+(j-1)*42, 8), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".WorkingStatus",     getU16(GlobalDataBuffer[id-1], 38228+(i-1)*126+(j-1)*42), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".BatterySOC",        getU16(GlobalDataBuffer[id-1], 38229+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "%"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".ChargeAndDischargePower", getI32(GlobalDataBuffer[id-1], 38233+(i-1)*126+(j-1)*42) / 1000, {name: "", unit: "kW"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".Voltage",           getU16(GlobalDataBuffer[id-1], 38235+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "V"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".Current",           getI16(GlobalDataBuffer[id-1], 38236+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "A"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".TotalCharge",       getU32(GlobalDataBuffer[id-1], 38238+(i-1)*126+(j-1)*42) / 100, {name: "", unit: "kWh"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".TotalDischarge",    getU32(GlobalDataBuffer[id-1], 38240+(i-1)*126+(j-1)*42) / 100, {name: "", unit: "kWh"});
      
                      // [[38452, 38454, 38456][38458, 38460, 38462]] ( +2 for each pack, +6 for each stack)
                      createState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".MaxTemperature", getI16(GlobalDataBuffer[id-1], 38452+(i-1)*6+(j-1)*2) / 10, {name: "", unit: "°C"});
                      createState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".MinTemperature", getI16(GlobalDataBuffer[id-1], 38453+(i-1)*6+(j-1)*2) / 10, {name: "", unit: "°C"});
                  }
              }        
          }
      
          // Battery registers 110-141 are not supported by this script yet!
      }
      
      function ProcessPowerMeterStatus() {       
          forcesetState("Solarpower.Huawei.Meter.Status",          getU16(GlobalDataBuffer[PowerMeterID], 37100), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.VoltageL1",        getI32(GlobalDataBuffer[PowerMeterID], 37101)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL2",        getI32(GlobalDataBuffer[PowerMeterID], 37103)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL3",        getI32(GlobalDataBuffer[PowerMeterID], 37105)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL1",        getI32(GlobalDataBuffer[PowerMeterID], 37107)  / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL2",        getI32(GlobalDataBuffer[PowerMeterID], 37109)  / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL3",        getI32(GlobalDataBuffer[PowerMeterID], 37111) / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.ActivePower",     getI32(GlobalDataBuffer[PowerMeterID], 37113) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ReactivePower",   getI32(GlobalDataBuffer[PowerMeterID], 37115) / 1, {name: "", unit: "Var"});
          forcesetState("Solarpower.Huawei.Meter.PowerFactor",     getI16(GlobalDataBuffer[PowerMeterID], 37117) / 1000, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.GridFrequency",   getI16(GlobalDataBuffer[PowerMeterID], 37118) / 100, {name: "", unit: "Hz"});
          forcesetState("Solarpower.Huawei.Meter.PositiveActiveEnergy",     getI32(GlobalDataBuffer[PowerMeterID], 37119) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Meter.ReverseActiveEnergy",      getI32(GlobalDataBuffer[PowerMeterID], 37121) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Meter.AccumulatedReactivePower", getI32(GlobalDataBuffer[PowerMeterID], 37123) / 100, {name: "", unit: "kVarh"});
          forcesetState("Solarpower.Huawei.Meter.MeterType",       getU16(GlobalDataBuffer[PowerMeterID], 37125), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.VoltageL1-L2",       getI32(GlobalDataBuffer[PowerMeterID], 37126) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL2-L3",       getI32(GlobalDataBuffer[PowerMeterID], 37128) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL3-L1",       getI32(GlobalDataBuffer[PowerMeterID], 37130) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL1",    getI32(GlobalDataBuffer[PowerMeterID], 37132) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL2",    getI32(GlobalDataBuffer[PowerMeterID], 37134) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL3",    getI32(GlobalDataBuffer[PowerMeterID], 37136) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.MeterModel",      getU16(GlobalDataBuffer[PowerMeterID], 37138), {name: "", unit: ""});
      }
      
      function processInverterStatus(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State1", getU16(GlobalDataBuffer[id-1], 32000), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State2", getU16(GlobalDataBuffer[id-1], 32001), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State3", getU16(GlobalDataBuffer[id-1], 32002), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm1", getU16(GlobalDataBuffer[id-1], 32008), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm2", getU16(GlobalDataBuffer[id-1], 32009), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm3", getU16(GlobalDataBuffer[id-1], 32010), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.1_Voltage",       getI16(GlobalDataBuffer[id-1], 32016) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.1_Current",       getI16(GlobalDataBuffer[id-1], 32017) / 100 , {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.2_Voltage",       getI16(GlobalDataBuffer[id-1], 32018) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.2_Current",       getI16(GlobalDataBuffer[id-1], 32019) / 100 , {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InputPower",             getI32(GlobalDataBuffer[id-1], 32064) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1-L2_Voltage",           getU16(GlobalDataBuffer[id-1], 32066) / 10  , {name: "", unit: "V"});      
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2-L3_Voltage",           getU16(GlobalDataBuffer[id-1], 32067) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3-L1_Voltage",           getU16(GlobalDataBuffer[id-1], 32068) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1_Voltage",            getU16(GlobalDataBuffer[id-1], 32069) / 10  , {name: "", unit: "V"});                              
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2_Voltage",            getU16(GlobalDataBuffer[id-1], 32070) / 10  , {name: "", unit: "V"});                                                  
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3_Voltage",            getU16(GlobalDataBuffer[id-1], 32071) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1_Current",         getI32(GlobalDataBuffer[id-1], 32072) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2_Current",         getI32(GlobalDataBuffer[id-1], 32074) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3_Current",         getI32(GlobalDataBuffer[id-1], 32076) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PeakActivePowerDay",     getI32(GlobalDataBuffer[id-1], 32078) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActivePower",            getI32(GlobalDataBuffer[id-1], 32080) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ReactivePower",          getI32(GlobalDataBuffer[id-1], 32082) / 1000, {name: "", unit: "kVar"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PowerFactor",            getI16(GlobalDataBuffer[id-1], 32084) / 1000, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".GridFrequency",          getU16(GlobalDataBuffer[id-1], 32085) / 100 , {name: "", unit: "Hz"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Efficiency",             getU16(GlobalDataBuffer[id-1], 32086) / 100 , {name: "", unit: "%"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InternalTemperature",    getI16(GlobalDataBuffer[id-1], 32087) / 10  , {name: "", unit: "°C"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InsulationResistance",   getU16(GlobalDataBuffer[id-1], 32088) / 1000, {name: "", unit: "MOhm"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".DeviceStatus",              getU16(GlobalDataBuffer[id-1], 32089), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".FaultCode",                 getU16(GlobalDataBuffer[id-1], 32090), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".StartupTime",               getU16(GlobalDataBuffer[id-1], 32091), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ShutdownTime",              getU16(GlobalDataBuffer[id-1], 32093), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".AccomulatedEnergyYield",    getU16(GlobalDataBuffer[id-1], 32106), {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".DailyEnergyYield",          getU16(GlobalDataBuffer[id-1], 32114), {name: "", unit: "kWh"});
      }
      
      function ProcessDeviceInfo(id) {      
          // Note: Manual says its quantitiy is 15, but that is the number (+1) of 8bit characters
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Model",  getZeroTerminatedString(GlobalDataBuffer[id-1], 30000, 8), {name: "", unit: ""}); 
          forcesetState("Solarpower.Huawei.Inverter." + id + ".SN",     getZeroTerminatedString(GlobalDataBuffer[id-1], 30015, 6), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PN",     getZeroTerminatedString(GlobalDataBuffer[id-1], 30025, 6), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ModelID",           getU16(GlobalDataBuffer[id-1], 30070), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PVStrings",         getU16(GlobalDataBuffer[id-1], 30071), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MPPTrackers",       getU16(GlobalDataBuffer[id-1], 30072), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxRatedPower",     getU32(GlobalDataBuffer[id-1], 30073) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxActivePower",    getU32(GlobalDataBuffer[id-1], 30075) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxApparentPower",  getU32(GlobalDataBuffer[id-1], 30077) / 1000, {name: "", unit: "kVA"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxReactivePowerToGrid",        getI32(GlobalDataBuffer[id-1], 30079) / 1000, {name: "", unit: "kVAr"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxReactivePowerFromGrid",      getI32(GlobalDataBuffer[id-1], 30081) / 1000, {name: "", unit: "kVAr"});
      }
      
      function readRegisterSpace(id, address, length) {
          client.setID(ModBusIDs[id-1]);
          client.readHoldingRegisters(address, length, function(err, data) {
              if (err) {
                  console.warn("Error received reading address " + address + " from id: " + ModBusIDs[id-1] + " with error: " + modbusErrorMessages[err.modbusCode]);            
              }
              else
              {   
                  console.debug("Read data from id/address " + ModBusIDs[id-1] + "/" + address + "\nData is: " + data.data);
                  for(var i = 0; i < length; i++)  {
                      GlobalDataBuffer[id-1][address+i] = data.data[i];
                  } 
              }
          });
      }
      
      function processData() {
          console.log("Processing new data...");
          for(var i = 1; i <= ModBusIDs.length; i++) {
              ProcessDeviceInfo(i);
              processInverterStatus(i);
              processBattery(i);
              processInverterPowerAdjustments(i);
              processOptimizers(i); 
          }    
          ProcessPowerMeterStatus();
          console.log("Processing done!");
      }
      
      
      // -------------------------------------------------------------------
      // This is the main function triggering a  read via modbus-tcp every two seconds.
      // Processing of data is triggered as soon as one complete set of registers is copied.
      var triggerprocessing = 0; 
      var currentinverter = 1;
      
      
      setInterval(function() {
          if(triggerprocessing == 1) {
              triggerprocessing = 0;
              processData();        
          }      
         
          console.log("Triggering read of inverter " + currentinverter + " at address " + RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][0] + " with length " +  RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][1]);
          readRegisterSpace(currentinverter, RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][0], RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][1]); 
          RegisterSpacesToReadContinuouslyPtr++;               
          if(RegisterSpacesToReadContinuouslyPtr >= RegisterSpacesToReadContinuously.length) {
              RegisterSpacesToReadContinuouslyPtr = 0;
              currentinverter++
              if(currentinverter > ModBusIDs.length){
                  currentinverter = 1;  
                  triggerprocessing = 1;                    
              }
          }     
      }, 2000);
      
      posted in ioBroker Allgemein
      K
      Kachel
    • Leckagesensor SYR Safe-T Connect - how to get it smart

      Hi,

      ich hab einen Leckagesensor SYR Safe-T Connect (https://www.syr.de/de/Produkte/DF262290-60DA-4785-858F-3A155324CA68/Safe-T-Connect) in der Hauptwasserleitung im Haus. Das Teil heißt Connect, da es über Netzwerkkabel ins Heimnetz verbunden wird und dann nach Hause telefoniert. Leider ist die 'Connect'-Funktion ein proprietäre Lösung, bei dem der Safe-T nur mit dem Server von SYR redet. Wenn der SYR-Server mal down ist oder von SYR abgeschaltet wird, dann funktioniert nur noch die Steuerung am Gerät selber. Die Parameter nur im Heimnetz auslesen und ansteuern funktioniert nur mit älteren Firmwares und dem etwas aufwändigeren Abfangen der Netzwerkpackete. Bei neueren Firmwares sind die Pakete verschlüsselt und man sieht leider nix mehr, sodass der Weg für unseren Leckagesensor nicht funktionierte. Der Leckagesensor sendet alle paar Sekunden ein Paket zum Server, die Datenmenge liegt bei ca. 500 MB pro Monat.

      Viele Informationen dazu findet man unter https://www.msxfaq.de/sonst/iot/syr_safe-t_connect.htm . An dieser Stelle ein Herzlichen Dank für das Zusammentragen der Informationen an den Autor dieser Seite! Es hat mich erst dazu inspiriert mich mit dem lokalen Auslesen vom Leckagesensor weiter auseinander zu setzen.

      Die diversen Schnittstellen sind auf der Seite von MSXFAQ erläutert. Aber dieser Service-Eingang nicht.... Ich hab mich mit dem Oszilloskop dran gehängt und siehe da: Es läuft RS485 auf den mittleren beiden Pinnen des RJ10-Steckers (4P4C). Also flux einen USB auf RS485-Adapter gekauft, ein Telefonhörerkabel mit RJ10 geopfert und das ganze an einen Raspberry Pi gehängt.

      Schritt 1:
      Der Port erscheint bei mir unter /dev/ttyUSB1. Mit dem Oszi noch die Geschwindigkeit gemessen: Es läuft auf 19200 Baud. Polarität ... tjo... try&error... es kann eigentlich nichts kaputt gehen und es gibt nur zwei Möglichkeiten (A-A & B-B oder A-B & B-A).

      Mit cat -v /dev/ttyUSB1 & wird alles auf dem Port auf die Kommandozeile ausgegeben. Ist die Polarität richtig, dann sieht man eine Ausgabe - andernfalls muss man die Polarität der beiden Adern drehen.

      Man sieht dort die Kommunikation zwischen dem LAN-Modul, welches die diversen Parameter abfragt, und dem Steuer-Mikrokontroller selber, der auf die Abfragen antwortet. Das LAN-Modul fragt jedoch nur regelmäßig die Parameter ab, wenn es mit einem Netzwerk verbunden ist. Andernfalls kommt nur alle paar Minuten eine kurze Abfrage des Gerätetyps.

      Schritt 2:
      Jetzt wollen wir natürlich die Daten selber abfragen und der SYR soll nicht mehr im Internet hängen. Aus den Ausgaben von Schritt 1 und der MSXFAQ-Seite sieht man, dass immer ein clrADM:, dann ein setADM(2)f gesendet wird und darauf dann die unterschiedlichen Parameter mit z.b. getAVO für die aktuelle Zapfmenge in Milliliter kommt.

      Von der Kommandozeile senden wir die aus Schritt 1 aufgezeichneten und interpretierten Hex-Werte - und lassen dabei den cat oben dank dem &-Zeichen im Hintergrund weiterlaufen:
      echo -en "\x0D\x0A\x1B\x31\x3a\x63\x6C\x72\x41\x44\x4d\x0d\x0a" > /dev/ttyUSB1; sleep 0.3; echo -en "\x0d\x0a\x1b\x31\x3a\x73\x65\x74\x41\x44\x4d\x28\x32\x29\x66\x0d\x0a" > /dev/ttyUSB1; sleep 0.3; echo -en "\x0d\x0a\x1b\x31\x3agetAVO\x0d" > /dev/ttyUSB1;
      Wie ihr seht ist getAVO nicht in Hex sondern zur besseren Lesbarkeit als ASCII drin.

      Und wir bekommen zurück:
      ADMIN RESET^MFACTORY^M0mL^M [^M ist das ASCII-Zeichen Carriage Return.]

      -> Jackpot! Damit bekommen wir eine erste simple Lösung hin um Parameter in ioBroker zu bekommen. Der ioBroker läuft zufälliger Weise schon auf dem Raspberry Pi. Jetzt fehlt nur noch etwas Quellcode um den Seriellen Port anzusteuern.

      Dafür bietet sich eine Javascript-Instanz an. Wir fügen das Package "serialport" in den Instanzeinstellungen hinzu und nutzen den folgenden Quellcode.

      Javascript_SYR_T_Connect.txt

      Das Script sendet alle 10 Sekunden die Befehle in der commands-variable in aufsteigender Reihenfolge, die zurück erhaltenen Werte werden parsed und als Objekte in den ioBroker gesendet. Danach wird der nächste Befehl rausgesendet. [Serialport muss auf einer 10.x-Version sein - andernfalls müsst ihr die 'require'-Zeilen anpassen.]

      Es kann passieren, dass das LAN-Modul dazwischen funkt - wir betreiben den RS485-Bus ja gerade mit drei Transceivern, wovon zwei (Raspi und LAN-Modul) immer wieder von alleine anfangen zu senden ohne auf den anderen zu hören. Die Kollisionen sind leider unvermeidbar. Um das bestmöglichst abzufangen bricht das Script seine eigene Übertragung ab, wenn es eine Kommunikation vom LAN-Modul mitbekommt. In dem Fall kann es aber dennoch zu fehlerhaften Parameterwerten kommen.

      Noch vorhandene TODOs:

      • Parameter auf gültigen Wertebereich beschränken. Vermindert die Wahrscheinlichkeit von Lesefehlern durch Bus-Kollisionen
      • Unbekannte Werte identifizieren. Die Parameterliste ist lang und bei vielen Parametern habe ich noch nicht verstanden was sie bedeuten.
      • Set-Befehle einbauen.... man will ja schließlich eine automatische Umschaltung zwischen Anwesend (große erlaubte Zapfmenge) und Abwesend (kleine erlaubte Zapfmenge) haben sowie auf Knopfdruck den Leckagesensor für eine Zeit deaktivieren um [Blumen gießen, Pool füllen, Teich säubern,... you name it...].

      Ich hoffe ich kann mit dem Script jemandem eine Freude machen. Wer möchte kann das Script gerne nutzen. Einfach den Pfad von eurer seriellen Schnittstelle eintragen und ausführen. Wer es ändern möchte darf dies auch gerne tun - es freut aber sicher alle ioBroker-Nutzer wenn ihr Änderungen auch wieder veröffentlicht.

      der Kachel

      posted in ioBroker Allgemein
      K
      Kachel

    Latest posts made by Kachel

    • RE: Leckagesensor SYR Safe-T Connect - how to get it smart

      @andreasph
      Entschuldige die späte Reaktion - das Forum hat mich nicht auf deine Nachricht hingewiesen.

      Es funktioniert insgesamt schon recht gut. Die Kollisionen sind etwas nervig. Ich wollte das Script noch anpassen, dass es die Objekte im IObroker erst setzt, wenn auch die letzte Werteabfrage ohne Kollision passiert ist. Alternativ wäre es eine Möglichkeit auf den Bus zu hören, das Ende der Abfrage vom Internetmodul abzuwarten und direkt danach die eigene Abfrage zu starten. Damit müsste die Kollision weg sein.

      Werte setzen habe ich bisher noch nicht implementiert. Ist auch auf der Todo-Liste. Sofern die Kollision oben gelöst ist sollte es auch kein Problem sein einen Wert zu setzen. Durch nochmaliges Abfragen vom Wert kann festgestellt werden, ob die Übertragung erfolgreich war.

      Grüße,

      Kachel

      posted in ioBroker Allgemein
      K
      Kachel
    • RE: Leckagesensor SYR Safe-T Connect - how to get it smart

      @jey-cee : Top! Danke!

      für alle die das Script nutzen wollen bitte folgendes am Ende des Scripts hinzufügen:

      // close connection if script stopped
      onStop(function (callback) {
      if (port.isOpen) {
      // close connection
      port.close();
      }
      callback();
      }, 2000 /ms/);

      posted in ioBroker Allgemein
      K
      Kachel
    • RE: Leckagesensor SYR Safe-T Connect - how to get it smart

      Und noch eine kurze Anmerkung: Die Javascript-Instanz lässt beim Beenden/Neustarten vom Script den seriellen Port offen. Entsprechend kann der Port beim nächsten Start nicht mehr geöffnet und genutzt werden. Der Workaround gerade ist: Die komplette Javascript-instanz einmal neu starten. Danach ist der Port wieder freigegeben und man kann das Script wieder starten.

      posted in ioBroker Allgemein
      K
      Kachel
    • Leckagesensor SYR Safe-T Connect - how to get it smart

      Hi,

      ich hab einen Leckagesensor SYR Safe-T Connect (https://www.syr.de/de/Produkte/DF262290-60DA-4785-858F-3A155324CA68/Safe-T-Connect) in der Hauptwasserleitung im Haus. Das Teil heißt Connect, da es über Netzwerkkabel ins Heimnetz verbunden wird und dann nach Hause telefoniert. Leider ist die 'Connect'-Funktion ein proprietäre Lösung, bei dem der Safe-T nur mit dem Server von SYR redet. Wenn der SYR-Server mal down ist oder von SYR abgeschaltet wird, dann funktioniert nur noch die Steuerung am Gerät selber. Die Parameter nur im Heimnetz auslesen und ansteuern funktioniert nur mit älteren Firmwares und dem etwas aufwändigeren Abfangen der Netzwerkpackete. Bei neueren Firmwares sind die Pakete verschlüsselt und man sieht leider nix mehr, sodass der Weg für unseren Leckagesensor nicht funktionierte. Der Leckagesensor sendet alle paar Sekunden ein Paket zum Server, die Datenmenge liegt bei ca. 500 MB pro Monat.

      Viele Informationen dazu findet man unter https://www.msxfaq.de/sonst/iot/syr_safe-t_connect.htm . An dieser Stelle ein Herzlichen Dank für das Zusammentragen der Informationen an den Autor dieser Seite! Es hat mich erst dazu inspiriert mich mit dem lokalen Auslesen vom Leckagesensor weiter auseinander zu setzen.

      Die diversen Schnittstellen sind auf der Seite von MSXFAQ erläutert. Aber dieser Service-Eingang nicht.... Ich hab mich mit dem Oszilloskop dran gehängt und siehe da: Es läuft RS485 auf den mittleren beiden Pinnen des RJ10-Steckers (4P4C). Also flux einen USB auf RS485-Adapter gekauft, ein Telefonhörerkabel mit RJ10 geopfert und das ganze an einen Raspberry Pi gehängt.

      Schritt 1:
      Der Port erscheint bei mir unter /dev/ttyUSB1. Mit dem Oszi noch die Geschwindigkeit gemessen: Es läuft auf 19200 Baud. Polarität ... tjo... try&error... es kann eigentlich nichts kaputt gehen und es gibt nur zwei Möglichkeiten (A-A & B-B oder A-B & B-A).

      Mit cat -v /dev/ttyUSB1 & wird alles auf dem Port auf die Kommandozeile ausgegeben. Ist die Polarität richtig, dann sieht man eine Ausgabe - andernfalls muss man die Polarität der beiden Adern drehen.

      Man sieht dort die Kommunikation zwischen dem LAN-Modul, welches die diversen Parameter abfragt, und dem Steuer-Mikrokontroller selber, der auf die Abfragen antwortet. Das LAN-Modul fragt jedoch nur regelmäßig die Parameter ab, wenn es mit einem Netzwerk verbunden ist. Andernfalls kommt nur alle paar Minuten eine kurze Abfrage des Gerätetyps.

      Schritt 2:
      Jetzt wollen wir natürlich die Daten selber abfragen und der SYR soll nicht mehr im Internet hängen. Aus den Ausgaben von Schritt 1 und der MSXFAQ-Seite sieht man, dass immer ein clrADM:, dann ein setADM(2)f gesendet wird und darauf dann die unterschiedlichen Parameter mit z.b. getAVO für die aktuelle Zapfmenge in Milliliter kommt.

      Von der Kommandozeile senden wir die aus Schritt 1 aufgezeichneten und interpretierten Hex-Werte - und lassen dabei den cat oben dank dem &-Zeichen im Hintergrund weiterlaufen:
      echo -en "\x0D\x0A\x1B\x31\x3a\x63\x6C\x72\x41\x44\x4d\x0d\x0a" > /dev/ttyUSB1; sleep 0.3; echo -en "\x0d\x0a\x1b\x31\x3a\x73\x65\x74\x41\x44\x4d\x28\x32\x29\x66\x0d\x0a" > /dev/ttyUSB1; sleep 0.3; echo -en "\x0d\x0a\x1b\x31\x3agetAVO\x0d" > /dev/ttyUSB1;
      Wie ihr seht ist getAVO nicht in Hex sondern zur besseren Lesbarkeit als ASCII drin.

      Und wir bekommen zurück:
      ADMIN RESET^MFACTORY^M0mL^M [^M ist das ASCII-Zeichen Carriage Return.]

      -> Jackpot! Damit bekommen wir eine erste simple Lösung hin um Parameter in ioBroker zu bekommen. Der ioBroker läuft zufälliger Weise schon auf dem Raspberry Pi. Jetzt fehlt nur noch etwas Quellcode um den Seriellen Port anzusteuern.

      Dafür bietet sich eine Javascript-Instanz an. Wir fügen das Package "serialport" in den Instanzeinstellungen hinzu und nutzen den folgenden Quellcode.

      Javascript_SYR_T_Connect.txt

      Das Script sendet alle 10 Sekunden die Befehle in der commands-variable in aufsteigender Reihenfolge, die zurück erhaltenen Werte werden parsed und als Objekte in den ioBroker gesendet. Danach wird der nächste Befehl rausgesendet. [Serialport muss auf einer 10.x-Version sein - andernfalls müsst ihr die 'require'-Zeilen anpassen.]

      Es kann passieren, dass das LAN-Modul dazwischen funkt - wir betreiben den RS485-Bus ja gerade mit drei Transceivern, wovon zwei (Raspi und LAN-Modul) immer wieder von alleine anfangen zu senden ohne auf den anderen zu hören. Die Kollisionen sind leider unvermeidbar. Um das bestmöglichst abzufangen bricht das Script seine eigene Übertragung ab, wenn es eine Kommunikation vom LAN-Modul mitbekommt. In dem Fall kann es aber dennoch zu fehlerhaften Parameterwerten kommen.

      Noch vorhandene TODOs:

      • Parameter auf gültigen Wertebereich beschränken. Vermindert die Wahrscheinlichkeit von Lesefehlern durch Bus-Kollisionen
      • Unbekannte Werte identifizieren. Die Parameterliste ist lang und bei vielen Parametern habe ich noch nicht verstanden was sie bedeuten.
      • Set-Befehle einbauen.... man will ja schließlich eine automatische Umschaltung zwischen Anwesend (große erlaubte Zapfmenge) und Abwesend (kleine erlaubte Zapfmenge) haben sowie auf Knopfdruck den Leckagesensor für eine Zeit deaktivieren um [Blumen gießen, Pool füllen, Teich säubern,... you name it...].

      Ich hoffe ich kann mit dem Script jemandem eine Freude machen. Wer möchte kann das Script gerne nutzen. Einfach den Pfad von eurer seriellen Schnittstelle eintragen und ausführen. Wer es ändern möchte darf dies auch gerne tun - es freut aber sicher alle ioBroker-Nutzer wenn ihr Änderungen auch wieder veröffentlicht.

      der Kachel

      posted in ioBroker Allgemein
      K
      Kachel
    • RE: Huawei Sun2000 & ioBroker via JS script funktioniert

      @ple Bei mir arbeiten zwei Sun2000-10ktl-m1, die zusammen über einen Dongle kabelgebunden im Netzwerk hängen. Die beiden haben jeweils eine Batterie mit drei Batteriepacks dran und jeder der vier PV-Strings hat Optimierer dran. Der 'primary' Wechselrichter liest noch über eine serielle Schnittstelle einen Zwischenzähler aus, damit die Einspeiseleistung begrenzt werden kann.

      Man muss für die Kommunikation Modbus über TCP in den Einstellungen der Inverter aktivieren und die Modbus-IDs raussuchen und ins Skript übertragen. Ob das Skript auch mit anderen Konfigurationen (Wechselrichter/Speicher/Optimierer/PowerMeter) zusammen spielt, kann ich nicht testen.
      Grüße,
      Kachel

      posted in ioBroker Allgemein
      K
      Kachel
    • RE: Huawei Sun2000 & ioBroker via JS script funktioniert

      @wendy2702 : Das hatte ich versucht, jedoch ohne Erfolg.

      posted in ioBroker Allgemein
      K
      Kachel
    • Huawei Sun2000 & ioBroker via JS script funktioniert

      Die Modbus-Ansteuerung vom Huawei Sun2000 Wechselrichter ist über TCP etwas speziell, da nach öffnen des TCP-Ports noch eine Pause eingehalten werden muss, da sonst keine Daten zurück geliefert werden. Auch wird nicht jede Modbus-TCP-Anfrage mit den angeforderten Registern beantwortet. Daher funktioniert die Kommunikation über den normalen Modbus-Adapter im ioBroker nicht.

      Um die verfügbaren Register in den ioBroker zu bekommen hab ich ein js-script geschrieben, dass die Abfrage der Register über TCP macht und die Daten entsprechend parsed. Man braucht dafür im IOBroker nur die ScriptEngine und muss in deren Settings noch die modbus-serial hinzufügen. Danach legt das Script einen großen Satz an Objekten an und aktualisiert die regelmäßig (ca. 2x die Minute). Es werden nur Register gelesen - das Schreiben von Registern ist nicht eingebaut (und bei mir gerade auch nicht nötig). Damit die Netzwerkpakete möglichst groß sind werden die Registern in Blöcken abgefragt.

      Wer möchte kann das Script gerne nutzen. . Einfach IP, Batteriekonfiguration und die Modbus-IDs eintragen und ausführen. Wer es ändern möchte darf dies auch gerne tun - es freut aber sicher alle ioBroker-Nutzer wenn ihr Änderungen auch wieder veröffentlicht.

      Falls jemand noch eine Idee hat, wie man den Huawei File-transfer über Modbus implementieren kann (mit deren speziellem function-code 0x41), würde ich mich freuen. Der fehlt leider damit die Optimierer ihre Echtzeit-Daten in den IOBroker liefern können...

      der Kachel

      // License: Beerware! Do what ever you like with this, but I'm not liable for anything that you do with it.
      // If you like this code, feel free to buy me a beer ...
      // Have fun with it! der Kachel
      var ModbusRTU = require("modbus-serial");
      var client = new ModbusRTU();
      
      var modbusErrorMessages = [
          "Unknown error",
          "Illegal function (device does not support this read/write function)",
          "Illegal data address (register not supported by device)",
          "Illegal data value (value cannot be written to this register)",
          "Slave device failure (device reports internal error)",
          "Acknowledge (requested data will be available later)",
          "Slave device busy (retry request again later)"
      ];
      
      // open connection to a tcp line
      client.setTimeout(10000);
      
      // Enter your inverter modbus IP and port here:
      client.connectTCP("$$$ADD.YOUR.IP.HERE$$$", { port: 502 });
      // Enter the Modbus-IDs of your Sun2000 inverters here:
      const ModBusIDs = [16, 1];
      // On which Modbus-ID can we reach the power meter? (via Sun2000!)
      const PowerMeterID = 0;
      // Enter your battery stack setup. 2 dimensional array. 
      // e.g. [[3, 2], [3, 0]] means:
      // First inverter has two battery stacks with 3 + 2 battery modules
      // while second inverter has only one battery stack with 3 battery modules
      const BatteryUnits = [[3, 0], [3, 0]];
      
      // These register spaces need to be read:
      const RegisterSpacesToReadContinuously = [[30000, 81], [37100, 114], [32000, 116], [37000, 68],  [37700, 100], [37800, 100], [38200, 100], [38300, 100], [38400, 100], [35300, 40]];
      var RegisterSpacesToReadContinuouslyPtr = 0;
      
      var GlobalDataBuffer = new Array(2);
      for(var i=0; i<ModBusIDs.length; i++) {
          GlobalDataBuffer[i] = new Array(50000); // not optimized....
      }
      
      // ---------------------------------------------------------------
      // Some helper functions:
      function readUnsignedInt16(array) {
          var value = array[0];    
          return value;
      }
      
      function readUnsignedInt32(array) {
          var value = array[0] * 256 * 256 + array[1];    
          return value;
      }
      
      function readSignedInt16(array) {
          var value = 0;
          if (array[0] > 32767)
              value = array[0] - 65535; 
          else
              value = array[0];
      
          return value;
      }
      function readSignedInt32(array) {
          var value = 0;
          for (var i = 0; i < 2; i++) {
              value = (value << 16) | array[i];
          }
          return value;
      }
      function getU16(dataarray, index) {
          var value = readUnsignedInt16(dataarray.slice(index, index+1));
          return value;
      }
      
      function getU32(dataarray, index) {
          var value = readUnsignedInt32(dataarray.slice(index, index+2));
          return value;
      }
      
      function getI16(dataarray, index) {
          var value = readSignedInt16(dataarray.slice(index, index+1));
          return value;
      }
      
      function getI32(dataarray, index) {
          var value = readSignedInt32(dataarray.slice(index, index+2));
          return value;
      }
      
      function getString(dataarray, index, length) {
          var shortarray = dataarray.slice(index, index+length);
          var bytearray = [];
          for(var i = 0; i < length; i++) {
              bytearray.push(dataarray[index+i] >> 8);
              bytearray.push(dataarray[index+i] & 0xff);
          }       
          var value =  String.fromCharCode.apply(null, bytearray);    
          return value;
      }
      
      function getZeroTerminatedString(dataarray, index, length) {
          var shortarray = dataarray.slice(index, index+length);
          var bytearray = [];
          for(var i = 0; i < length; i++) {
              bytearray.push(dataarray[index+i] >> 8);
              bytearray.push(dataarray[index+i] & 0xff);
          }       
          var value =  String.fromCharCode.apply(null, bytearray);    
          var value2 = new String(value).trim();
          return value2;
      }
      
      function forcesetState(objectname, value, options) {
          if(!existsState(objectname)) {
              createState(objectname, value, options);        
          }
          else {
              setState(objectname, value);
          }
      }  
      // ---------------------------------------------------------------
      // Functions to map registers into ioBreaker objects:
      function processOptimizers(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerTotalNumber",     getU16(GlobalDataBuffer[id-1], 35200), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerOnlineNumber",    getU16(GlobalDataBuffer[id-1], 35201), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".OptimizerFeatureData",     getU16(GlobalDataBuffer[id-1], 35202), {name: "", unit: ""});
      }
      
      function processInverterPowerAdjustments(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementMode",     getU16(GlobalDataBuffer[id-1], 35300), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementValue",    getU32(GlobalDataBuffer[id-1], 35301), {name: "", unit: ""}); // Note: This might be an error in the manual. It says register 35302 with quantity 2, but on 35303 is already the next value.
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ActiveAdjustementCommand",  getU16(GlobalDataBuffer[id-1], 35303), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementMode",   getU16(GlobalDataBuffer[id-1], 35304), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementValue",  getU32(GlobalDataBuffer[id-1], 35305), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.ReactiveAdjustementCommand",getU16(GlobalDataBuffer[id-1], 35307), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActiveAdjustement.PowerMeterActivePower",     getI32(GlobalDataBuffer[id-1], 35313), {name: "", unit: ""});
      }
      
      function processBattery(id) {
          // Battery registers 1-15 (Stack 1 related)
          if(BatteryUnits[id-1][0] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RunningStatus",          getU16(GlobalDataBuffer[id-1], 37000), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.ChargeAndDischargePower",getI32(GlobalDataBuffer[id-1], 37001), {name: "Charge and Discharge Power", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BusVoltage",             getU16(GlobalDataBuffer[id-1], 37003) / 10, {name: "Busvoltage", unit: "V"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BatterySOC",             getU16(GlobalDataBuffer[id-1], 37004) / 10, {name: "Battery SOC", unit: "%"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.WorkingMode",            getU16(GlobalDataBuffer[id-1], 37006), {name: "Working Mode", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RatedChargePower",       getU32(GlobalDataBuffer[id-1], 37007), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RatedDischargePower",    getU32(GlobalDataBuffer[id-1], 37009), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.FaultID",                getU16(GlobalDataBuffer[id-1], 37014), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.CurrentDayChargeCapacity",    getU32(GlobalDataBuffer[id-1], 37015) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37017) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BusCurrent",             getI16(GlobalDataBuffer[id-1], 37021) / 10, {name: "Buscurrent", unit: "A"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BatteryTemperature",     getI16(GlobalDataBuffer[id-1], 37022) / 10, {name: "Battery Temperatue", unit: "°C"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.RemainingChargeDischargeTime", getU16(GlobalDataBuffer[id-1], 37025), {name: "", unit: "mins"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.DCDCversion",            getZeroTerminatedString(GlobalDataBuffer[id-1], 37026, 10), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.BMSversion",             getZeroTerminatedString(GlobalDataBuffer[id-1], 37036, 10), {name: "", unit: ""});
          }
          // Battery registers 16+17 (Storage-related)
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.MaximumChargePower",                getU32(GlobalDataBuffer[id-1], 37046), {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.MaximumDischargePower",             getU32(GlobalDataBuffer[id-1], 37048), {name: "", unit: "W"});
      
          // Battery register 18-20 (Stack 1 related)
          if(BatteryUnits[id-1][0] > 0) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.SN",                         getZeroTerminatedString(GlobalDataBuffer[id-1], 37052, 10), {name: "Serialnumber", unit: ""});       
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.TotalCharge",                getU32(GlobalDataBuffer[id-1], 37066) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.TotalDischarge",             getU32(GlobalDataBuffer[id-1], 37068) / 100, {name: "", unit: "kWh"});
          }
          // Battery register 21-31 (Stack 2 related)
          if(BatteryUnits[id-1][1] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.SN",                     getZeroTerminatedString(GlobalDataBuffer[id-1], 37700, 10), {name: "Serialnumber", unit: ""});        
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BatterySOC",             getU16(GlobalDataBuffer[id-1], 37738) / 10, {name: "", unit: "%"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.RunningStatus",          getU16(GlobalDataBuffer[id-1], 37741), {name: "", unit: ""});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.ChargeAndDischargePower",getI32(GlobalDataBuffer[id-1], 37743), {name: "", unit: "W"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.CurrentDayChargeCapacity",    getU32(GlobalDataBuffer[id-1], 37746) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37748) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BusVoltage",             getU16(GlobalDataBuffer[id-1], 37750) / 10, {name: "", unit: "V"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BusCurrent",             getI16(GlobalDataBuffer[id-1], 37751) / 10, {name: "", unit: "A"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.BatteryTemperature",     getI16(GlobalDataBuffer[id-1], 37752) / 10, {name: "", unit: "°C"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.TotalCharge",                 getU32(GlobalDataBuffer[id-1], 37753) / 100, {name: "", unit: "kWh"});
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.TotalDischarge",              getU32(GlobalDataBuffer[id-1], 37755) / 100, {name: "", unit: "kWh"});
          }
          // Battery register 32-41 (Storage related)
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.RatedCapacity", getU32(GlobalDataBuffer[id-1], 37758) / 1, {name: "", unit: "Wh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.SOC", getU16(GlobalDataBuffer[id-1], 37760) / 10, {name: "", unit: "%"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.RunningStatus", getU16(GlobalDataBuffer[id-1], 37762) / 1, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.BusVoltage", getU16(GlobalDataBuffer[id-1], 37763) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.BusCurrent", getI16(GlobalDataBuffer[id-1], 37764) / 10, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.ChargeAndDischargePower", getI32(GlobalDataBuffer[id-1], 37765) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.TotalCharge", getU32(GlobalDataBuffer[id-1], 37780) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.TotalDischarge", getU32(GlobalDataBuffer[id-1], 37782) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.CurrentDayChargeCapacity", getU32(GlobalDataBuffer[id-1], 37784) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Battery.CurrentDayDischargeCapacity", getU32(GlobalDataBuffer[id-1], 37786) / 100, {name: "Current DayDiscarge ", unit: "kWh"});
      
          // Battery registers 42+43 (Battery stack related)   
          if(BatteryUnits[id-1][1] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.2.SoftwareVersion",    getZeroTerminatedString(GlobalDataBuffer[id-1], 37814, 8), {name: "Softwareversion", unit: ""});
          }
          if(BatteryUnits[id-1][0] > 0) {
              forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack.1.SoftwareVersion",    getZeroTerminatedString(GlobalDataBuffer[id-1], 37799, 8), {name: "Softwareversion", unit: ""});
          }
      
          // Registers 44 to 98: (Battery pack related)
          for(var i = 1; i <= 2; i++){        
              if(BatteryUnits[id-1][i-1] >= 0) {            
                  for(var j = 1; j <= BatteryUnits[id-1][i-1]; j++) {
                      //[[38200, 38242, 38284] [38326, 38368, 38410]]; (+42 for each battery pack, +126 for each stack)
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".SN",                getZeroTerminatedString(GlobalDataBuffer[id-1], 38200+(i-1)*126+(j-1)*42, 6), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".FirmwareVersion",   getZeroTerminatedString(GlobalDataBuffer[id-1], 38210+(i-1)*126+(j-1)*42, 8), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".WorkingStatus",     getU16(GlobalDataBuffer[id-1], 38228+(i-1)*126+(j-1)*42), {name: "", unit: ""});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".BatterySOC",        getU16(GlobalDataBuffer[id-1], 38229+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "%"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".ChargeAndDischargePower", getI32(GlobalDataBuffer[id-1], 38233+(i-1)*126+(j-1)*42) / 1000, {name: "", unit: "kW"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".Voltage",           getU16(GlobalDataBuffer[id-1], 38235+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "V"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".Current",           getI16(GlobalDataBuffer[id-1], 38236+(i-1)*126+(j-1)*42) / 10, {name: "", unit: "A"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".TotalCharge",       getU32(GlobalDataBuffer[id-1], 38238+(i-1)*126+(j-1)*42) / 100, {name: "", unit: "kWh"});
                      forcesetState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".TotalDischarge",    getU32(GlobalDataBuffer[id-1], 38240+(i-1)*126+(j-1)*42) / 100, {name: "", unit: "kWh"});
      
                      // [[38452, 38454, 38456][38458, 38460, 38462]] ( +2 for each pack, +6 for each stack)
                      createState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".MaxTemperature", getI16(GlobalDataBuffer[id-1], 38452+(i-1)*6+(j-1)*2) / 10, {name: "", unit: "°C"});
                      createState("Solarpower.Huawei.Inverter." + id + ".Batterystack." + i + ".Battery" + j + ".MinTemperature", getI16(GlobalDataBuffer[id-1], 38453+(i-1)*6+(j-1)*2) / 10, {name: "", unit: "°C"});
                  }
              }        
          }
      
          // Battery registers 110-141 are not supported by this script yet!
      }
      
      function ProcessPowerMeterStatus() {       
          forcesetState("Solarpower.Huawei.Meter.Status",          getU16(GlobalDataBuffer[PowerMeterID], 37100), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.VoltageL1",        getI32(GlobalDataBuffer[PowerMeterID], 37101)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL2",        getI32(GlobalDataBuffer[PowerMeterID], 37103)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL3",        getI32(GlobalDataBuffer[PowerMeterID], 37105)  / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL1",        getI32(GlobalDataBuffer[PowerMeterID], 37107)  / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL2",        getI32(GlobalDataBuffer[PowerMeterID], 37109)  / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.CurrentL3",        getI32(GlobalDataBuffer[PowerMeterID], 37111) / 100, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Meter.ActivePower",     getI32(GlobalDataBuffer[PowerMeterID], 37113) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ReactivePower",   getI32(GlobalDataBuffer[PowerMeterID], 37115) / 1, {name: "", unit: "Var"});
          forcesetState("Solarpower.Huawei.Meter.PowerFactor",     getI16(GlobalDataBuffer[PowerMeterID], 37117) / 1000, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.GridFrequency",   getI16(GlobalDataBuffer[PowerMeterID], 37118) / 100, {name: "", unit: "Hz"});
          forcesetState("Solarpower.Huawei.Meter.PositiveActiveEnergy",     getI32(GlobalDataBuffer[PowerMeterID], 37119) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Meter.ReverseActiveEnergy",      getI32(GlobalDataBuffer[PowerMeterID], 37121) / 100, {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Meter.AccumulatedReactivePower", getI32(GlobalDataBuffer[PowerMeterID], 37123) / 100, {name: "", unit: "kVarh"});
          forcesetState("Solarpower.Huawei.Meter.MeterType",       getU16(GlobalDataBuffer[PowerMeterID], 37125), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Meter.VoltageL1-L2",       getI32(GlobalDataBuffer[PowerMeterID], 37126) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL2-L3",       getI32(GlobalDataBuffer[PowerMeterID], 37128) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.VoltageL3-L1",       getI32(GlobalDataBuffer[PowerMeterID], 37130) / 10, {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL1",    getI32(GlobalDataBuffer[PowerMeterID], 37132) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL2",    getI32(GlobalDataBuffer[PowerMeterID], 37134) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.ActivePowerL3",    getI32(GlobalDataBuffer[PowerMeterID], 37136) / 1, {name: "", unit: "W"});
          forcesetState("Solarpower.Huawei.Meter.MeterModel",      getU16(GlobalDataBuffer[PowerMeterID], 37138), {name: "", unit: ""});
      }
      
      function processInverterStatus(id) {
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State1", getU16(GlobalDataBuffer[id-1], 32000), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State2", getU16(GlobalDataBuffer[id-1], 32001), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".State3", getU16(GlobalDataBuffer[id-1], 32002), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm1", getU16(GlobalDataBuffer[id-1], 32008), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm2", getU16(GlobalDataBuffer[id-1], 32009), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Alarm3", getU16(GlobalDataBuffer[id-1], 32010), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.1_Voltage",       getI16(GlobalDataBuffer[id-1], 32016) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.1_Current",       getI16(GlobalDataBuffer[id-1], 32017) / 100 , {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.2_Voltage",       getI16(GlobalDataBuffer[id-1], 32018) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".String.2_Current",       getI16(GlobalDataBuffer[id-1], 32019) / 100 , {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InputPower",             getI32(GlobalDataBuffer[id-1], 32064) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1-L2_Voltage",           getU16(GlobalDataBuffer[id-1], 32066) / 10  , {name: "", unit: "V"});      
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2-L3_Voltage",           getU16(GlobalDataBuffer[id-1], 32067) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3-L1_Voltage",           getU16(GlobalDataBuffer[id-1], 32068) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1_Voltage",            getU16(GlobalDataBuffer[id-1], 32069) / 10  , {name: "", unit: "V"});                              
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2_Voltage",            getU16(GlobalDataBuffer[id-1], 32070) / 10  , {name: "", unit: "V"});                                                  
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3_Voltage",            getU16(GlobalDataBuffer[id-1], 32071) / 10  , {name: "", unit: "V"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L1_Current",         getI32(GlobalDataBuffer[id-1], 32072) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L2_Current",         getI32(GlobalDataBuffer[id-1], 32074) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Grid.L3_Current",         getI32(GlobalDataBuffer[id-1], 32076) / 1000, {name: "", unit: "A"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PeakActivePowerDay",     getI32(GlobalDataBuffer[id-1], 32078) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ActivePower",            getI32(GlobalDataBuffer[id-1], 32080) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ReactivePower",          getI32(GlobalDataBuffer[id-1], 32082) / 1000, {name: "", unit: "kVar"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PowerFactor",            getI16(GlobalDataBuffer[id-1], 32084) / 1000, {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".GridFrequency",          getU16(GlobalDataBuffer[id-1], 32085) / 100 , {name: "", unit: "Hz"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Efficiency",             getU16(GlobalDataBuffer[id-1], 32086) / 100 , {name: "", unit: "%"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InternalTemperature",    getI16(GlobalDataBuffer[id-1], 32087) / 10  , {name: "", unit: "°C"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".InsulationResistance",   getU16(GlobalDataBuffer[id-1], 32088) / 1000, {name: "", unit: "MOhm"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".DeviceStatus",              getU16(GlobalDataBuffer[id-1], 32089), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".FaultCode",                 getU16(GlobalDataBuffer[id-1], 32090), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".StartupTime",               getU16(GlobalDataBuffer[id-1], 32091), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ShutdownTime",              getU16(GlobalDataBuffer[id-1], 32093), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".AccomulatedEnergyYield",    getU16(GlobalDataBuffer[id-1], 32106), {name: "", unit: "kWh"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".DailyEnergyYield",          getU16(GlobalDataBuffer[id-1], 32114), {name: "", unit: "kWh"});
      }
      
      function ProcessDeviceInfo(id) {      
          // Note: Manual says its quantitiy is 15, but that is the number (+1) of 8bit characters
          forcesetState("Solarpower.Huawei.Inverter." + id + ".Model",  getZeroTerminatedString(GlobalDataBuffer[id-1], 30000, 8), {name: "", unit: ""}); 
          forcesetState("Solarpower.Huawei.Inverter." + id + ".SN",     getZeroTerminatedString(GlobalDataBuffer[id-1], 30015, 6), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PN",     getZeroTerminatedString(GlobalDataBuffer[id-1], 30025, 6), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".ModelID",           getU16(GlobalDataBuffer[id-1], 30070), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".PVStrings",         getU16(GlobalDataBuffer[id-1], 30071), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MPPTrackers",       getU16(GlobalDataBuffer[id-1], 30072), {name: "", unit: ""});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxRatedPower",     getU32(GlobalDataBuffer[id-1], 30073) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxActivePower",    getU32(GlobalDataBuffer[id-1], 30075) / 1000, {name: "", unit: "kW"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxApparentPower",  getU32(GlobalDataBuffer[id-1], 30077) / 1000, {name: "", unit: "kVA"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxReactivePowerToGrid",        getI32(GlobalDataBuffer[id-1], 30079) / 1000, {name: "", unit: "kVAr"});
          forcesetState("Solarpower.Huawei.Inverter." + id + ".MaxReactivePowerFromGrid",      getI32(GlobalDataBuffer[id-1], 30081) / 1000, {name: "", unit: "kVAr"});
      }
      
      function readRegisterSpace(id, address, length) {
          client.setID(ModBusIDs[id-1]);
          client.readHoldingRegisters(address, length, function(err, data) {
              if (err) {
                  console.warn("Error received reading address " + address + " from id: " + ModBusIDs[id-1] + " with error: " + modbusErrorMessages[err.modbusCode]);            
              }
              else
              {   
                  console.debug("Read data from id/address " + ModBusIDs[id-1] + "/" + address + "\nData is: " + data.data);
                  for(var i = 0; i < length; i++)  {
                      GlobalDataBuffer[id-1][address+i] = data.data[i];
                  } 
              }
          });
      }
      
      function processData() {
          console.log("Processing new data...");
          for(var i = 1; i <= ModBusIDs.length; i++) {
              ProcessDeviceInfo(i);
              processInverterStatus(i);
              processBattery(i);
              processInverterPowerAdjustments(i);
              processOptimizers(i); 
          }    
          ProcessPowerMeterStatus();
          console.log("Processing done!");
      }
      
      
      // -------------------------------------------------------------------
      // This is the main function triggering a  read via modbus-tcp every two seconds.
      // Processing of data is triggered as soon as one complete set of registers is copied.
      var triggerprocessing = 0; 
      var currentinverter = 1;
      
      
      setInterval(function() {
          if(triggerprocessing == 1) {
              triggerprocessing = 0;
              processData();        
          }      
         
          console.log("Triggering read of inverter " + currentinverter + " at address " + RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][0] + " with length " +  RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][1]);
          readRegisterSpace(currentinverter, RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][0], RegisterSpacesToReadContinuously[RegisterSpacesToReadContinuouslyPtr][1]); 
          RegisterSpacesToReadContinuouslyPtr++;               
          if(RegisterSpacesToReadContinuouslyPtr >= RegisterSpacesToReadContinuously.length) {
              RegisterSpacesToReadContinuouslyPtr = 0;
              currentinverter++
              if(currentinverter > ModBusIDs.length){
                  currentinverter = 1;  
                  triggerprocessing = 1;                    
              }
          }     
      }, 2000);
      
      posted in ioBroker Allgemein
      K
      Kachel
    Community
    Impressum | Datenschutz-Bestimmungen | Nutzungsbedingungen
    The ioBroker Community 2014-2023
    logo